Mark schemes

Q1.

(a) (substance reduced) Fe₂O₃ allow iron oxide

1

(reason)

(Fe₂O₃) loses oxygen

MP2 is dependent upon MP1 being awarded

ignore Fe3+ gains electrons

1

(b) $\frac{3}{2} \times 12g$

1

(c) A loses electrons and B+ gains electrons

1

(d) **D**

1

(e) (metal) C

1

(explanation) aluminium forms ions with a charge 3+ allow aluminium forms Al³+ (ions)

1

(so) 3 nitrate ions are needed for 1 aluminium ion

allow (so) 3 nitrate ions are needed to balance
the 3+ charge on 1 aluminium (ion)

1

(f) (percentage atom economy =)

$$\frac{A_r X}{A_r X + 54} \times 100 = 77.3$$

1

 $100 A_r \mathbf{X} = 77.3 (A_r \mathbf{X} + 54)$

allow
$$A_r X = 0.773 (A_r X + 54)$$

allow correct use of an incorrectly determined value of the M_r of the non-useful reactant atoms

1

 $22.7 A_{\rm f} X = 4174.2$

allow 0.227 A_r **X** = 41.742

1

 $A_{\rm r}X = 184$

allow 183.8854626 correctly rounded to at least three significant figures

1

alternative approach 1:

$$(3M_r H_2O = (3 \times 16) + (6 \times 1) =) 54$$

and (percentage = 100 - 77.3 =) 22.7% (1)

(total
$$M_r$$
 of reactants =)
$$\frac{100}{22.7} \times 54 (1)$$

allow correct use of an incorrectly determined value for 3M_r H₂O and/or percentage of unwanted products

$$= 238 (1)$$

$$(A_r \mathbf{X} = 238 - 54)$$

or
 $(A_r \mathbf{X} = 238 \times \frac{77.3}{100})$

$$= 184 (1)$$

allow correct use of an incorrectly determined value of total M_r of reactants and/or value for $3M_r$ H_2O

allow 183.8854626 correctly rounded to at least three significant figures

alternative approach 2:

$$(3M_r H_2O = (3 \times 16) + (6 \times 1) =) 54$$

and (percentage = 100 - 77.3 =) 22.7% (1)

$$\left(\frac{1}{22.7} \times 54 = \right) 2.3788546 (1)$$

allow correct use of an incorrectly determined value for $3M_r$ H_2O and/or percentage of unwanted products

$$2.3788546 \times 77.3(1)$$

allow correct use of an incorrectly determined value for 1% of the total M_r of reactants

$$= 184 (1)$$

allow 183.8854626 correctly rounded to at least three significant figures